Author:
Sueishi Naohisa,Kamata Syo,Misumi Tatsuhiro,Ünsal Mithat
Abstract
Abstract
We investigate the exact-WKB analysis for quantum mechanics in a periodic potential, with N minima on S1. We describe the Stokes graphs of a general potential problem as a network of Airy-type or degenerate Weber-type building blocks, and provide a dictionary between the two. The two formulations are equivalent, but with their own pros and cons. Exact-WKB produces the quantization condition consistent with the known conjectures and mixed anomaly. The quantization condition for the case of N-minima on the circle factorizes over the Hilbert sub-spaces labeled by discrete theta angle (or Bloch momenta), and is consistent with ’t Hooft anomaly for even N and global inconsistency for odd N. By using Delabaere-Dillinger-Pham formula, we prove that the resurgent structure is closed in these Hilbert subspaces, built on discrete theta vacua, and by a transformation, this implies that fixed topological sectors (columns of resurgence triangle) are also closed under resurgence.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference87 articles.
1. J. Ecalle, Les Fonctions Resurgentes, Vol. I–III, Publ. Math. Orsay, (1981).
2. E. Brézin, J.C. Le Guillou and J. Zinn-Justin, Perturbation Theory at Large Order. 2. Role of the Vacuum Instability, Phys. Rev. D 15 (1977) 1558 [INSPIRE].
3. L.N. Lipatov, Divergence of the Perturbation Theory Series and the Quasiclassical Theory, Sov. Phys. JETP 45 (1977) 216 [Zh. Eksp. Teor. Fiz. 72 (1977) 411] [INSPIRE].
4. G. Alvarez and C. Casares, Exponentially small corrections in the asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator, J. Phys. A 33 (2000) 5171.
5. G. Alvarez and C. Casares, Uniform asymptotic and JWKB expansions for anharmonic oscillators, J. Phys. A 33 (2000) 2499.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献