Circuit complexity of knot states in Chern-Simons theory

Author:

Camilo Giancarlo,Melnikov Dmitry,Novaes Fábio,Prudenziati Andrea

Abstract

Abstract We compute an upper bound on the circuit complexity of quantum states in 3d Chern-Simons theory corresponding to certain classes of knots. Specifically, we deal with states in the torus Hilbert space of Chern-Simons that are the knot complements on the 3-sphere of arbitrary torus knots. These can be constructed from the unknot state by using the Hilbert space representation of the S and T modular transformations of the torus as fundamental gates. The upper bound is saturated in the semiclassical limit of Chern-Simons theory. The results are then generalized for a family of multi-component links that are obtained by “Hopf-linking” different torus knots. We also use the braid word presentation of knots to discuss states on the punctured sphere Hilbert space associated with 2-bridge knots and links. The calculations present interesting number theoretic features related with continued fraction representations of rational numbers. In particular, we show that the minimization procedure defining the complexity naturally leads to regular continued fractions, allowing a geometric interpretation of the results in the Farey tesselation of the upper-half plane. Finally, we relate our discussion to the framework of path integral optimization by generalizing the original argument to non-trivial topologies.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference81 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Circuit Complexity in Z2 EEFT;Symmetry;2022-12-22

2. Circuit Complexity in Topological Quantum Field Theory;Fortschritte der Physik;2022-09-02

3. Galois orbits of TQFTs: symmetries and unitarity;Journal of High Energy Physics;2022-01

4. Topological entanglement and hyperbolic volume;Journal of High Energy Physics;2021-10

5. Complexity for link complement states in Chern-Simons theory;Physical Review D;2021-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3