Author:
Ishii Takaaki,Järvinen Matti,Nijs Govert
Abstract
Abstract
We establish a holographic bottom-up model which covers both the baryonic and quark matter phases in cold and dense QCD. This is obtained by including the baryons using simple approximation schemes in the V-QCD model, which also includes the backreaction of the quark matter to the dynamics of pure Yang-Mills. We examine two approaches for homogeneous baryon matter: baryons as a thin layer of noninteracting matter in the holographic bulk, and baryons with a homogeneous bulk gauge field. We find that the second approach exhibits phenomenologically reasonable features. At zero temperature, the vacuum, baryon, and quark matter phases are separated by strongly first order transitions as the chemical potential varies. The equation of state in the baryonic phase is found to be stiff, i.e., the speed of sound clearly exceeds the value c
s
2
= 1/3 of conformal plasmas at high baryon densities.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献