Abstract
Abstract
We provide further elaboration on kappa mode, which is a mode constructed by the linear combination of Rindler modes in the right and the left Rindler wedges, exhibiting norms with opposite signs. We establish a relation among different kappa vacua, resembling the thermofield double state. However, the energy of a kappa photon no longer exhibits a linear dependence on its frequency, unless the limit of κ → 0 (the Rindler vacuum) is taken into account. In other words, a kappa vacuum can be expressed in terms of the Rindler vacuum as the conventional thermofield double state, with the usual energy for a photon. However, it features a modified Unruh temperature given by $$ {T}_{\kappa }=\frac{\mathit{\hslash a}}{2\pi c{k}_B}\kappa $$
T
κ
=
ℏa
2
πc
k
B
κ
. Consequently, when a uniformly accelerated observer with an acceleration a is immersed in a κ-vacuum, they perceive a thermal bath. However, the temperature experienced by the observer is a modified Unruh temperature denoted as Tκ. Remarkably, the Unruh temperature can be enhanced by an arbitrary factor of κ.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics