Effects of cow reproductive status, parity and lactation stage on behaviour and heavy breathing indications of a commercial accelerometer during hot weather conditions

Author:

Leliveld Lisette M.C.ORCID,Lovarelli DanielaORCID,Finzi AlbertoORCID,Riva ElisabettaORCID,Provolo GiorgioORCID

Abstract

AbstractHeat stress presents one of the most urgent challenges to modern dairy farming, having major detrimental impacts on cow welfare, health, and production. Understanding the effect of cow factors (reproductive status, parity, and lactation stage) on the physiological and behavioural response to hot weather conditions is essential for the accurate detection and practical application of heat mitigation strategies. To study this, collars with commercial accelerometer-based sensors were fitted on 48 lactation dairy cows to record behaviour and heavy breathing from late spring to late summer. The temperature-humidity index (THI) was calculated from measurements of 8 barn sensors. We found that, above a THI of 84, cows in advanced pregnancy (>90 days) spent more time breathing heavily and less time eating and in low activity than other cows, while cows in early pregnancy (≤90 days) spent less time breathing heavily, more time eating and in low activity. Cows with 3+ lactations showed less time breathing heavily and in high activity and more time ruminating and in low activity than cows with fewer lactations. Although lactation stage interacted significantly with THI on time spent breathing heavily, ruminating, eating, and in low activity, there was no clear indication at which lactation stage cows were more sensitive to heat. These findings show that cow factors affect the cow’s physiological and behavioural response to heat, which could be used to provide group-specific heat abatement strategies, thereby improving heat stress management.

Funder

Università degli Studi di Milano

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Atmospheric Science,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3