Abstract
AbstractHeat stress presents one of the most urgent challenges to modern dairy farming, having major detrimental impacts on cow welfare, health, and production. Understanding the effect of cow factors (reproductive status, parity, and lactation stage) on the physiological and behavioural response to hot weather conditions is essential for the accurate detection and practical application of heat mitigation strategies. To study this, collars with commercial accelerometer-based sensors were fitted on 48 lactation dairy cows to record behaviour and heavy breathing from late spring to late summer. The temperature-humidity index (THI) was calculated from measurements of 8 barn sensors. We found that, above a THI of 84, cows in advanced pregnancy (>90 days) spent more time breathing heavily and less time eating and in low activity than other cows, while cows in early pregnancy (≤90 days) spent less time breathing heavily, more time eating and in low activity. Cows with 3+ lactations showed less time breathing heavily and in high activity and more time ruminating and in low activity than cows with fewer lactations. Although lactation stage interacted significantly with THI on time spent breathing heavily, ruminating, eating, and in low activity, there was no clear indication at which lactation stage cows were more sensitive to heat. These findings show that cow factors affect the cow’s physiological and behavioural response to heat, which could be used to provide group-specific heat abatement strategies, thereby improving heat stress management.
Funder
Università degli Studi di Milano
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Atmospheric Science,Ecology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献