Extreme temperature drop alters hatching delay, reproductive success, and physiological condition in great tits

Author:

Glądalski MichałORCID,Bańbura Mirosława,Kaliński Adam,Markowski Marcin,Skwarska Joanna,Wawrzyniak Jarosław,Zieliński Piotr,Bańbura Jerzy

Abstract

AbstractIt has been suggested that extreme weather events may be treated as natural experiments that may unravel the mechanisms by which birds adjust their phenology and breeding parameters to environmental variability. In 2017, a sudden and heavy drop of temperatures for several days affected many European bird populations. This event occurred during the laying–early incubation period in the great tit (Parus major) population in central Poland, causing a large delay in hatching and had sustained reproductive consequences. This cold snap occurring once breeding activity had already started in 2017 was followed by the warm and invariable breeding season of 2018. This natural experiment had an essential influence on great tit reproductive parameters. We found a significant difference in hatching date, number of fledglings, hatching success, and fledging success between 2017 and 2018. In 2017, there were about two fledglings per nest fewer than in 2018. Fledging success was positively associated with hatching delay in 2017, while the relation was negative in 2018. Hatching success differed significantly between both years, being higher in 2018. Mean level of hemoglobin (used as index of body, physiological condition) in the blood of nestling great tits was higher in 2017 than in 2018. We argue that the moment of hatching may be (at least in some years) more tightly related to the moment of maximum food demand of tit nestlings than the traditionally used laying date. Also in extreme years, phenotypic plasticity of hatching delays may be insufficient to adjust the timing of breeding to the upcoming extreme weather events. Further examining its limits may be an important goal for future research.

Funder

University of Lodz

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Atmospheric Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3