An anisotropic parameterization scheme for longwave irradiance and its impact on radiant load in urban outdoor settings

Author:

Wallenberg NilsORCID,Holmer Björn,Lindberg Fredrik,Rayner David

Abstract

AbstractA robust representation of the radiative properties in complex urban settings is important for accurate estimations of radiant load. Here, we present a new parameterization scheme in the SOlar and LongWave Environmental Irradiance Geometry (SOLWEIG) model that partitions the upper hemisphere into 153 patches. Partitioning of the upper hemisphere enables determination if longwave irradiance originates from the sky, vegetation, sunlit building surfaces, or shaded building surfaces from each patch. Furthermore, a model for anisotropic sky longwave irradiance where emissivity increases with zenith angle is included. Comparisons between observations and simulations show high correlation, with R2 and RMSE for Tmrt of 0.94 and 4.6 °C, respectively, and R2 and RMSE for longwave radiation of 0.89 and 14.1 Wm−2, respectively. Simulations show that mean radiant temperature (Tmrt) can be up to 1.5 °C higher with an anisotropic sky compared to a uniform sky as an effect of higher radiant load on the vertical of a human when sky longwave irradiance increases with zenith angle. In comparisons of simulated Tmrt with the new parameterization and old parameterization schemes, previously overestimated Tmrt under trees (high sky obstruction, sky view factor (SVF) < 0.3) can be decreased by up to 3 °C from more realistic estimations using the patches. Moreover, Tmrt close to sunlit walls (SVF ~ 0.5) is increased by up to 2–3 °C from increased exposure to sunlit surfaces. Concluding, anisotropic sky longwave radiation and directionality of longwave radiation from different sources are important in estimations of Tmrt of humans in outdoor settings.

Funder

University of Gothenburg

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Atmospheric Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3