High-resolution projections of outdoor thermal stress in the twenty-first century: a Tasmanian case study

Author:

Weeding Ben,Love Peter,Beyer Kathleen,Lucieer Arko,Remenyi Tom

Abstract

AbstractTo adapt to Earth’s rapidly changing climate, detailed modelling of thermal stress is needed. Dangerous stress levels are becoming more frequent, longer, and more severe. While traditional measurements of thermal stress have focused on air temperature and humidity, modern measures including radiation and wind speed are becoming widespread. However, projecting such indices has presented a challenging problem, due to the need for appropriate bias correction of multiple variables that vary on hourly timescales. In this paper, we aim to provide a detailed understanding of changing thermal stress patterns incorporating modern measurements, bias correction techniques, and hourly projections to assess the impact of climate change on thermal stress at human scales. To achieve these aims, we conduct a case study of projected thermal stress in central Hobart, Australia for 2040–2059, compared to the historical period 1990–2005. We present the first hourly metre-scale projections of thermal stress driven by multivariate bias-corrected data. We bias correct four variables from six dynamically downscaled General Circulation Models. These outputs drive the Solar and LongWave Environmental Irradiance Geometry model at metre scale, calculating mean radiant temperature and the Universal Thermal Climate Index. We demonstrate that multivariate bias correction can correct means on multiple time scales while accurately preserving mean seasonal trends. Changes in mean air temperature and UTCI by hour of the day and month of the year reveal diurnal and annual patterns in both temporal trends and model agreement. We present plots of future median stress values in the context of historical percentiles, revealing trends and patterns not evident in mean data. Our modelling illustrates a future Hobart that experiences higher and more consistent numbers of hours of heat stress arriving earlier in the year and extending further throughout the day.

Funder

Australian Government

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3