Impact of low-intensity heat events on mortality and morbidity in regions with hot, humid summers: a scoping literature review

Author:

Strathearn Melanie,Osborne Nicholas J.ORCID,Selvey Linda A.ORCID

Abstract

AbstractThe objective of this study is to determine the impacts of low-intensity heat on human health in regions with hot, humid summers. Current literature has highlighted an increase in mortality and morbidity rates during significant heat events. While the impacts on high-intensity events are established, the impacts on low-intensity events, particularly in regions with hot, humid summers, are less clear. A scoping review was conducted searching three databases (PubMed, EMBASE, Web of Science) using key terms based on the inclusion criteria. We included papers that investigated the direct human health impacts of low-intensity heat events (single day or heatwaves) in regions with hot, humid summers in middle- and high-income countries. We excluded papers written in languages other than English. Of the 600 publications identified, 33 met the inclusion criteria. Findings suggest that low-intensity heatwaves can increase all-cause non-accidental, cardiovascular-, respiratory- and diabetes-related mortality, in regions experiencing hot, humid summers. Impacts of low-intensity heatwaves on morbidity are less clear, with research predominantly focusing on hospitalisation rates with a range of outcomes. Few studies investigating the impact of low-intensity heat events on emergency department presentations and ambulance dispatches were found. However, the data from a limited number of studies suggest that both of these outcome measures increase during low-intensity heat events. Low-intensity heat events may increase mortality. There is insufficient evidence of a causal effect of low-intensity heat events on increasing morbidity for a firm conclusion. Further research on the impact of low-intensity heat on morbidity and mortality using consistent parameters is warranted.

Funder

The University of Queensland

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Atmospheric Science,Ecology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3