Climate sensitivity of seasonal radial growth in young stands of Mexican conifers

Author:

Pompa-García MarinORCID,Camarero J. JulioORCID,Valeriano Cristina,Vivar-Vivar Eduardo D.

Abstract

AbstractAlteration of forest by climate change and human activities modify the growth response of trees to temperature and moisture. Growth trends of young forests with even-aged stands recruited recently when the climate became warmer and drier are not well known. We analyze the radial growth response of young conifer trees (37–63 years old) to climatic parameters and drought stress employing Pearson correlations and the Vaganov-Shashkin Lite (VS-Lite) model. This study uses tree rings of six species of conifer trees (Pinus teocote, Pinus pseudostrobus, Pinus pinceana, Pinus montezumae, Pinus ayacahuite, and Taxodium mucronatum) collected from young forests with diverse growth conditions in northern and central Mexico. Seasonal ring growth and earlywood width (EW) were modeled as a function of temperature and soil moisture using the VS-Lite model. Wet and cool conditions in the previous winter and current spring enhance ring growth and EW production, mainly in sensitive species from dry sites (P. teocote, P. pseudostrobus, P. pinceana, and P. montezumae), whereas the growth of species from mesic sites (P. ayacahuite and T. mucronatum) shows little responsiveness to soil moisture. In P. ayacahuite and T. mucronatum, latewood growth is enhanced by warm summer conditions. The VS-Lite model shows that low soil moisture during April and May constrains growth in the four sensitive species, particularly in P. pinceana, the species dominant in the most xeric sites. Assessing seasonal ring growth and combining its response to climate with process-based growth models could complement xylogenesis data. Such framework should be widely applied, given the predicted warming and its impact on young forests.

Funder

Sistema Nacional de Investigadores

Consejo Superior de Investigaciones Cientificas

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Atmospheric Science,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3