Novel combination artificial neural network models could not outperform individual models for weather-based cashew yield prediction
Author:
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Atmospheric Science,Ecology
Link
https://link.springer.com/content/pdf/10.1007/s00484-022-02306-1.pdf
Reference53 articles.
1. Abbaszadeh P, Gavahi K, Alipour A et al (2022) Bayesian multi-modeling of deep neural nets for probabilistic crop yield prediction. Agric for Meteorol 314:108773. https://doi.org/10.1016/j.agrformet.2021.108773
2. Adisa O, Botai J, Adeola A et al (2019) Application of artificial neural network for predicting maize production in South Africa. Sustainability 11:1145. https://doi.org/10.3390/su11041145
3. Asseng S, Ewert F, Rosenzweig C et al (2013) Uncertainty in simulating wheat yields under climate change. Nat Clim Chang 3:827–832
4. Bocca FF, Rodrigues LHA (2016) The effect of tuning, feature engineering, and feature selection in data mining applied to rainfed sugarcane yield modelling. Comput Electron Agric 128:67–76
5. Brejda JJ, Moorman TB, Karlen DL, Dao TH (2000) Identification of regional soil quality factors and indicators I. Central and Southern High Plains. Soil Sci Soc Am J 64:2115–2124
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhanced Coconut Yield Prediction Using Internet of Things and Deep Learning: A Bi-Directional Long Short-Term Memory Lévy Flight and Seagull Optimization Algorithm Approach;Applied Sciences;2024-08-25
2. Effects of wind speed and wind direction on crop yield forecasting using dynamic time warping and an ensembled learning model;PeerJ;2024-06-11
3. Machine learning ensembles, neural network, hybrid and sparse regression approaches for weather based rainfed cotton yield forecast;International Journal of Biometeorology;2024-04-27
4. Predictive Pioneers;Advances in Psychology, Mental Health, and Behavioral Studies;2024-04-12
5. Forecasting soybean yield: a comparative study of neural networks, principal component analysis and penalized regression models using weather variables;Theoretical and Applied Climatology;2023-12-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3