Impact of windbreak design on microclimate in hot regions during cold waves: Numerical investigation

Author:

Abdalazeem Mohamed E.,Hassan Hamdy,Asawa Takashi,Mahmoud HatemORCID

Abstract

AbstractWinter cold wave adaptation strategies in hot climates due to climate change didn’t receive the deserved attention from previous studies. Therefore, this study comprehensively investigates the impact of various windbreak parameters on mitigating winter cold stress in hot steppe-arid climate. A microclimate model for a residential campus was built and validated through on-site measurement on a typical winter day to assess thirty-two scenarios for tree characteristics and spatial configuration windbreak parameters based on PET, wind speed, and Air Temperature (AT). Moreover, four configurations, that had best results on mitigating cold stress in winter, were tested during typical summer conditions to couple the assessment of cold and hot seasons. Additionally, environmental analysis for all scenarios was conducted. The results revealed that the most effective parameters for mitigating cold stress are tree distribution, Leaf Area Density (LAD), row number, spacing, and shape. Double rows of high LAD and medium height trees with small spacing yielded the best cold stress mitigation effect. Furthermore, the windbreak reduced the cold stress in the morning and night by 19.31% and 18.06%, respectively. It reduced AT and wind speed at night by 0.79 °C and 2.56 m/s, respectively. During summer, very hot PET area was reduced by 21.79% and 19.5% at 12:00 and 15:00, respectively.

Funder

Ministry of Higher Education, Egypt

Egypt Japan University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3