The use of remote sensing to derive maize sowing dates for large-scale crop yield simulations

Author:

Rezaei Ehsan EyshiORCID,Ghazaryan Gohar,González Javier,Cornish Natalie,Dubovyk Olena,Siebert Stefan

Abstract

AbstractOne of the major sources of uncertainty in large-scale crop modeling is the lack of information capturing the spatiotemporal variability of crop sowing dates. Remote sensing can contribute to reducing such uncertainties by providing essential spatial and temporal information to crop models and improving the accuracy of yield predictions. However, little is known about the impacts of the differences in crop sowing dates estimated by using remote sensing (RS) and other established methods, the uncertainties introduced by the thresholds used in these methods, and the sensitivity of simulated crop yields to these uncertainties in crop sowing dates. In the present study, we performed a systematic sensitivity analysis using various scenarios. The LINTUL-5 crop model implemented in the SIMPLACE modeling platform was applied during the period 2001–2016 to simulate maize yields across four provinces in South Africa using previously defined scenarios of sowing dates. As expected, the selected methodology and the selected threshold considerably influenced the estimated sowing dates (up to 51 days) and resulted in differences in the long-term mean maize yield reaching up to 1.7 t ha−1 (48% of the mean yield) at the province level. Using RS-derived sowing date estimations resulted in a better representation of the yield variability in space and time since the use of RS information not only relies on precipitation but also captures the impacts of socioeconomic factors on the sowing decision, particularly for smallholder farmers. The model was not able to reproduce the observed yield anomalies in Free State (Pearson correlation coefficient: 0.16 to 0.23) and Mpumalanga (Pearson correlation coefficient: 0.11 to 0.18) in South Africa when using fixed and precipitation rule-based sowing date estimations. Further research with high-resolution climate and soil data and ground-based observations is required to better understand the sources of the uncertainties in RS information and to test whether the results presented herein can be generalized among crop models with different levels of complexity and across distinct field crops.

Funder

German Federal Ministry of Education and Research

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Atmospheric Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3