Combining ZnO inverse opal and ZnO nanorods using ALD and hydrothermal growth

Author:

Karajz DánielORCID,Cseh Domonkos,Parditka Bence,Erdélyi Zoltán,Szilágyi Imre

Abstract

AbstractIn this paper, we combine the atomic layer deposition synthesis method of inverse opal with the hydrothermal growth of nanorods. From 460 nm polystyrene nanospheres opal crystals were produced using vertical deposition on Si wafers. The opal templates were covered with ZnO by atomic layer deposition. High temperature annealing was used to remove the polystyrene nanospheres to obtain the inverse opal structure. For the hydrothermal growth of ZnO nanorods, two production routes were analysed: hydrothermal reaction before and after the removal of the template. The two paths produced two distinct structures, one with plate like formations and one with nanorods, respectively. Also, the sample modified by the hydrothermal growth after the annealing showed slight differences in optical properties compared to the regular inverse opal. Morphology, composition and structure of the samples were explored using SEM, EDX and XRD. Optical properties were investigated with reflectance UV–Vis spectroscopy. Thermal stability of the polystyrene opal was determined using TG.

Funder

European Union and the State of Hungary, co-financed by the European Regional Development Fund

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3