Pulsating flow in a channel filled with a porous medium under local thermal non-equilibrium condition: an exact solution

Author:

Fathi-kelestani Arman,Nazari MeysamORCID,Mahmoudi Yasser

Abstract

AbstractThe present work investigates analytically the problem of forced convection heat transfer of a pulsating flow, in a channel filled with a porous medium under local thermal non-equilibrium condition. Internal heat generation is considered in the porous medium, and the channel walls are subjected to constant heat flux boundary condition. Exact solutions are obtained for velocity, Nusselt number and temperature distributions of the fluid and solid phases in the porous medium. The influence of pertinent parameters, including Biot number, Darcy number, fluid-to-solid effective thermal conductivity ratio and Prandtl number are discussed. The applied pressure gradient is considered in a sinusoidal waveform. The effect of dimensionless frequency and coefficient of the pressure amplitude on the system’s velocity and temperature fields are discussed. The general shape of the unsteady velocity for different times is found to be very similar to the steady data. Results show that the amplitudes of the unsteady temperatures for the fluid and solid phases decrease with the increase in Biot number or thermal conductivity ratio. For large Biot numbers, dimensionless temperatures of the solid and fluid phases are similar and are close to their steady counterparts. Results for the Nusselt number indicate that increasing Biot number or thermal conductivity ratio decreases the amplitude of Nusselt number. Increase in the internal heat generation in the solid phase does not have a significant influence on the ratio of amplitude-to-mean value of the Nusselt number, while internal heat generation in the fluid phase enhances this ratio.

Publisher

Springer Science and Business Media LLC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3