Entropy optimization of a FENE-P viscoelastic model: a numerically guided comprehensive analysis

Author:

Khan Razi,Rossi di Schio EugeniaORCID,Valdiserri Paolo

Abstract

AbstractThe influence of polymers on entropy generation processes is substantial, particularly in the fields of fluid dynamics and rheology. The FENE-P (Finitely Extensible Nonlinear Elastic-Peterlin) model describes the polymer’s dynamics as a result of the interaction between the stretching caused by the velocity gradient and the elastic force that restores the polymer to its equilibrium position. Models such as FENE-P aid in understanding and predicting polymer flow behaviour allowing for the reduction of entropy generation by optimizing system designs. A continuum approach is employed to express the heat flux vector and polymer confirmation tensor of the model. The study investigates the complex relationship between polymer conformation, flow dynamics, and heat transfer taking into account the thermophoresis (Soret effect) and mass diffusion-thermal diffusion coupling (Dufour effect) phenomena to optimize processes by reducing entropy. This study illuminates polymer’s significance in entropy minimization, improving engineering design methodologies and applications in materials science, chemical engineering, and fluid dynamics. As result, the presence of polymers leads to a substantial decrease in the total entropy of the system. This understanding provides opportunities for enhancing heat transfer systems, thereby facilitating the development of more efficient and sustainable technology.

Funder

Alma Mater Studiorum - Università di Bologna

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3