Analysis of unsteady mixed convection of Cu–water nanofluid in an oscillatory, lid-driven enclosure using lattice Boltzmann method

Author:

Valizadeh Ardalan Mostafa,Alizadeh Rasool,Fattahi Abolfazl,Adelian Rasi Navid,Doranehgard Mohammad Hossein,Karimi NaderORCID

Abstract

AbstractThe unsteady physics of laminar mixed convection in a lid-driven enclosure filled with Cu–water nanofluid is numerically investigated. The top wall moves with constant velocity or with a temporally sinusoidal function, while the other walls are fixed. The horizontal top and bottom walls are, respectively, held at the low and high temperatures, and the vertical walls are assumed to be adiabatic. The governing equations along with the boundary conditions are solved through D2Q9 fluid flow and D2Q5 thermal lattice Boltzmann network. The effects of Richardson number and volume fractions of nanoparticles on the fluid flow and heat transfer are investigated. For the first time in the literature, the current study considers the mechanical power required for moving the top wall of the enclosure under various conditions. This reveals that the power demand increases if the enclosure is filled with a nanofluid in comparison with that with a pure fluid. Keeping a constant heat transfer rate, the required power diminishes by implementing a temporally sinusoidal velocity on the top wall rather than a constant velocity. Reducing frequency of the wall oscillation leads to heat transfer enhancement. Similarly, dropping Richardson number and raising the volume fraction of the nanoparticles enhance the heat transfer rate. Through these analyses, the present study provides a physical insight into the less investigated problem of unsteady mixed convection in enclosures with oscillatory walls.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3