Computational analysis of heat transfer augmentation and thermodynamic irreversibility of hybrid nanofluids in a tube fitted with classical and elliptical‑cut twisted tape inserts

Author:

Khfagi Amir Mohamed,Hunt Graeme,Paul Manosh C.,Karimi NaderORCID

Abstract

AbstractThis work investigates heat transfer and entropy generation of a turbulent flow of an Al2O3–Cu/water hybrid nanofluid in a plain tube (PT) with classical (TPT) and elliptical‑cut twisted tape (TECT) inserts. The heat transfer and pressure drop are investigated numerically at Re (7000–15,000), mass concentration (1–4%), and the inlet temperature of the fluid (300 K). Further, the total entropy generation and Bejan number are examined at Re = 7000 and a mass concentration of 4%. The obtained results indicate that heat transfer can be intensified when inserting classical and elliptical‑cut twisted tape. In addition, an increase in the thermal conductivity of the fluid may cause a slight increase in the heat transfer coefficient. Moreover, heat transfer and thermal performance factors increase when the mass concentration of nanoparticles increases. The Nusselt numbers for TECT and TPT are 1.7 and 1.57 times higher than those for PT, respectively. The Nusselt number and thermal performance factor of hybrid nanofluid are greatest at roughly 195 and 1.9, respectively, showing 3.9% and 7.73% improvement compared to CuO/water nanofluid at Re = 7000. The analysis of the generation of entropy is expressed as a function of thermal and frictional contributions. The results indicate the existence of a minimum entropy generation for each type of tubes for Al2O3–Cu/water hybrid nanofluid. Total entropy generation analysis demonstrates that thermal entropy generation dominates at high heat flux. Moreover, increasing the nanoparticles decreases the generation of total entropy, which is ascribed to the thermal conductivity increment. In addition, the rate of total entropy generation declines as the vortex flow increases.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3