Characterizing the thermal phase behaviour of fipronil polymorphs

Author:

Moyo Dennis SimbarasheORCID,van der Merwe Elizabet MargarethaORCID,Rademeyer MelanieORCID,Malan Frederick PieterORCID,Atanasova Maria T.ORCID,Mapossa António BenjamimORCID,Focke Walter WilhelmORCID

Abstract

AbstractThis manuscript reports the investigation of the polymorphic behaviour of fipronil using a systematic comparison of the thermochemical and structural properties of different crystal forms obtained in this study as well as those previously reported in literature. The analytical techniques employed include DSC, TGA, PXRD, SCXRD and hot stage microscopy. DSC proved particularly useful because it made it possible to differentiate between the two different crystal forms found in the as-received neat fipronil. The DSC scans revealed the presence of two polymorphs which had melting endotherms with peak maxima at ca. 196 °C and 205 °C, respectively. These polymorphs were successfully separated via sublimation and resulted in a metastable, lower melting polymorph in the sublimate and a thermodynamically stable, higher melting form in the sublimation residue. Clear evidence for the instability of the lower melting polymorph was found when the endotherms were examined under a range of heating rates. The proportion of the metastable form appeared to increase as the rate was increased, indicating that the metastable form underwent a solid–solid phase transition to the stable form at low heating rates. Recrystallization of fipronil from different solvents yielded five different forms. TGA curves revealed that all forms, except the acetone-derived one, were solvate pseudo-polymorphs that showed solvent loss between 60 and 100 °C. The acetone-derived sample was a hemihydrate that only started to show mass loss at 120 °C. SCXRD studies revealed that three of the five forms have similar structural characteristics, while the other two forms differ notably from each other and the rest of the structures. Despite these structural differences, all five forms exhibit near-identical intra- and intermolecular hydrogen bond networks.

Funder

Department of Higher Education and Training

Deutsche Forschungsgemeinschaft

University of Pretoria

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Polymers and Plastics,Materials Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3