Performance evaluation of an indirect–direct evaporative cooler using aluminum oxide-based nanofluid

Author:

Ganesha A.,Kumar ShivaORCID,Kumar Nitesh,Girish H.,Harsha Anala Krishna,Sekhar Matam Vidya

Abstract

AbstractIndoor comfort has become a necessity in recent times with the advancement of science and technology. The usage of direct type air coolers increases the humidity of the closed room, and this increase in humidity is unfavorable. The present work deals with the study related to the combination of direct and indirect type air cooler to increase the performance. A set of mild steel plates have been arranged to form a cross flow heat exchanger to exchange the heat between cold nanofluid and warm air forms the indirect heat exchanger. Al2O3-based nanoparticles have been blended with pure water and used in indirect air coolers. Celdek pad 7090 is used as the cooling pad in the direct type of air cooling. Experiments are performed by varying the flow rates of water from 1 to 4 lpm, by varying the air velocities from 3 to 6 ms−1, and by varying the concentration of nanoparticles in the water from 0 to 0.2.5%. Performance parameters such as change in temperature, change in Relative humidity (RH), cooling efficiency and coefficient of performance (COP) are determined. It was found that by adding the nanoparticles, the performance of the cooler has been enhanced. Chane in dry bulb temperature (ΔDBT), cooling efficiency increased by 13.1%, 14% as compared to the indirect method without using the nanoparticles and 39.2% and 21% as compared to the only direct type. Similarly, ΔRH reduced by 27% when compared to only direct evaporative cooler. 3 LPM showed the best performance with the highest humidification efficiency and COP of 96% and 5.9, respectively. When the air velocity is increased from 3 to 6 ms−1, energy consumption increases by 49%. Combination of indirect–direct techniques with the use of nanofluid has shown the potential of greater reduction in the exit DBT with simultaneously without appreciably increasing the exit RH.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Polymers and Plastics,Materials Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3