Thermal stability of polymeric carbon nitride (PCN)-Al2O3–ZrO2 nanocomposites used in photocatalysis

Author:

Koltsov IwonaORCID

Abstract

AbstractPolymeric carbon nitride (PCN) was recently found to have extensive applications in the field of photocatalysis. Knowledge about thermal stability of PCN nanocomposites is crucial for this application and designing the final product. In this work, the thermal stability of PCN-Al2O3–ZrO2 nanocomposites was investigated. PCN nanocomposites were obtained in two steps: (1) microwave hydrothermal synthesis of co-precipitated AlOOH and ZrO2 precursors, followed by drying; (2) mixing the nanopowders with melamine powder and annealing in air in a tube furnace at 400, and 450 °C. The PCN nanocomposites were examined by attenuated total reflection technique of Fourier transformed infrared spectroscopy. Also, the evolved gas analysis was performed combining differential scanning calorimetry and thermogravimetry coupled with mass spectroscopy and FTIR. The results show that only PCN-Al2O3–ZrO2 nanocomposite obtained at 400 °C is stable from room temperature up to 490 °C and during thermal decomposition, in one step releases ammonia (NH3), cyanic acid (HNCO), water (H2O), and carbon dioxide (CO2). The limitation of the PCN-Al2O3–ZrO2 thermal stability and performance is AlOOH–ZrO2 used as a nanocomposite component.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3