Polarisation changes in guided infrared thermography using silver halide poly-crystalline mid-infrared fibre bundle

Author:

Markham Sarah K.ORCID,Mani AladinORCID,Korsakova Elena A.ORCID,Korsakov Aleksandr S.ORCID,Zhukova Liya V.,Bauer JoannaORCID,Silien ChristopheORCID,Tofail Syed A. M.ORCID

Abstract

Abstract Broadband mid-infrared (B-MIR) thermography using fibre optic waveguides can be critical in real-time imaging in harsh environments such as additive manufacturing, personalised medical diagnosis and therapy. We investigate the polarisation effect on thermal measurements through poly-crystalline fibre bundle employing a simple broadband cross-polarisation configuration experimental set-up. Silver halide poly-crystalline fibres AgCl1−xBrx (0 ≤ x≤1) (AgClBr-PolyC) have very wide transmission bandwidth spanning over the spectral range from 1 µm up to 31 µm FWHM. Moreover, they are non-toxic, non-hygroscopic, with relatively good flexibility, which make them very adequate for spectroscopic and thermal measurements in medical and clinical fields. In this study, we used a fibre bundle composed of seven single AgClBr-PolyC fibres, each with a core diameter of about 300 µm, inserted between two broadband MIR polarisers. A silicon carbide filament source was placed at the entrance of the fibre bundle, while a FLIR thermal camera with a close-up lens was employed to measure the spatial temperature distribution over the fibre-bundle end. Indeed, polarisation dependence of temperature measurements has been clearly observed in which the orientation of temperature extrema (minima and maxima) vary from one fibre to another within the bundle. Moreover, these observations have enabled the classification of AgClBr-PolyC fibres following their polarisation sensitivities by which some fibres are relatively highly sensitive to polarisation with polarisation temperature difference (PTD) that can reach 22.1 ± 2.8 °C, whereas some others show very low PTD values down to 3.1 ± 2.8 °C. Many applications can readily be found based on the advantages of both extreme cases.

Funder

Science Foundation Ireland

Russian Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fabrication of PEEK Ag/AgI mid-infrared hollow fiber and transmission reliability study for CO2 laser radiation;Infrared Physics & Technology;2024-01

2. Silver Halide Fiber Bundles for Diagnostic Medicine;2022 Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB);2022-07-07

3. 基于量子级联激光器照明的高对比度红外内窥成像;ACTA PHOTONICA SINICA;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3