Thermal studies of fly ashes expansion

Author:

Wons Wojciech,Rzepa Karol,Reben Manuela,Murzyn Paweł

Abstract

AbstractThe object of this study is to investigate the thermal properties of fly ashes from the last, farthest dedusting zone in terms of their use as ceramic masses additives. Siliceous fly ash is valuable additive to ceramic mass, which not only reduces its plasticity, but also actively affects sintering process and shapes the properties of the final material. The finest fly ash fractions are potentially useful flux materials in ceramics; however, a significant limitation in their use is due to thermal expansion/bloating occurring during high-temperature sintering. The bloating mechanism of fly ashes was investigated in relationship to their chemical composition with the use of DTA/TG/EGA analysis as well as high-temperature microscope. Chemical and phase compositions were studied by X-ray fluorescence and X-ray diffraction. Based on the results obtained, it can be concluded. The results indicate that bloating mechanism is caused by the co-occurrence of two phenomena accompanying sintering: appearance of high amount of liquid phase and simultaneous gas release from sintered material. The dominant mechanism is the simultaneous release of sulfur (IV) oxide and oxygen as a result of the redox reaction of removing SO3 from the vitreous phase.

Publisher

Springer Science and Business Media LLC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3