A review on the thermal conductivity of deep eutectic solvents

Author:

Atilhan Mert,Aparicio SantiagoORCID

Abstract

AbstractDeep eutectic solvents may develop a pivotal role in future technologies considering sustainability and safety as pivotal aspects for chemistry developments. The possible application of these fluids for heat transfer operations is of great relevance for which the knowledge of thermal properties such as thermal conductivity is required as well as inferring structure–property relationships which allow reverse design of the fluids according to the technological requirements. Considering the technological relevance of this property, the available literature on the thermal conductivity for deep eutectic solvents is critically discussed showing strengths and weaknesses. The analysis of the state-of-the-art shows the future needs in this research field considering the application of these solvents for thermal-related technologies. The review indicates the scarcity of reliable experimental data and the need of predictive methods, which could be used for process design and solvent screening purposes. Likewise, considering the relevance of developing predictive methods for in silico design of these fluids according to industrial needs, the available predictive theoretical approaches are analysed showing their reliability as well as future needs. Finally, considering the need of developing suitable and reliable structure–property relationship, the molecular level basis of thermal conductivity in deep eutectic solvents is discussed, showing the role of hydrogen bonding and the effects rising from the involved hydrogen bond donors and acceptors as well as the eutectic compositions. This work reports the first literature review and analysis on thermal conductivity for deep eutectic solvents considering an experimental and theoretical approach as well as providing support for the molecular basis of this technologically relevant property, thus contributing to the development of environmentally friendly materials for thermal-related technologies. Graphical abstract

Funder

Ministerio de Ciencia e Innovación

Universidad de Burgos

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Polymers and Plastics,Materials Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3