Abstract
AbstractWe have developed a new method to measure the viscosity of micrometric films by thermomechanical analysis with a hemispherical probe of millimetric diameter. The loading curve (displacement vs. time) recorded as the probe tip crosses the whole film at constant load until it touches the substrate is fitted to a theoretical curve shape that has been obtained after solving the problem of liquid flow under the probe tip. The method has been validated by measuring the viscosity of rosin films. It has been applied to analyze the thermal evolution of unstable liquid films that appear on Ba propionate, Ce(III) propionate and a low-fluorine precursor film of YBa2Cu3O6+x. During pyrolysis of the last two films, viscosity first diminishes due to heating and then it increases as solid oxide particles are formed inside the liquid.
Funder
Generalitat de Catalunya
Ministerio de Ciencia, Innovación y Universidades
Universitat de Girona
Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献