Thermodynamic feasibility and multiobjective optimization of a closed Brayton cycle-based clean cogeneration system

Author:

Rad Ehsan Amiri,Tayyeban Edris,Assareh Ehsanolah,riaz Amjad,Hoseinzadeh SiamakORCID,Lee Moonyong

Abstract

AbstractThe present research has analyzed the energy and exergy of a combined system of simultaneous power generation and cooling. To provide a comprehensive data sheet of this system, the system has been investigated in the temperature range of 300–800 °C, and 6 working fluids, including air, carbon dioxide, nitrogen, argon, xenon, and helium, have been investigated. The parameters affecting the performance of the system, namely the compressor inlet pressure, the compressor pressure ratio, and the intermediation pressure ratio were investigated. The power produced by the Brayton cycle at a pressure ratio of 5.2 is the highest due to the increase in compressor power consumption and turbine power generation. The results of the parametric study showed that the exergy efficiency of the system has the maximum value at the pressure ratio of 4.73. The results of the parametric study showed that increasing the pressure of the compressor does not have a significant effect on the electricity consumption and the temperature of the working fluid due to the constant pressure ratio. The input energy to the heat exchanger of the absorption chiller decreases with the increase in the Brayton cycle pressure ratio, and as a result, the cooling created by the chiller also decreases. In this method, three objective functions of exergy efficiency, energy efficiency, and total production power are considered as objective functions. The most optimal value of intermediation pressure ratio was obtained after the optimization process of 1.389. Also, the most optimal value of the pressure ratio of high-pressure and low-pressure turbines was reported as 2.563 and 1.845, respectively.

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Polymers and Plastics,Materials Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3