Utilisation of methylcellulose as a shaping agent in the fabrication of Ba0.95Ca0.05Ce0.9Y0.1O3 proton-conducting ceramic membranes via the gelcasting method

Author:

Dudek Magdalena,Lis Bartłomiej,Kocyło Elwira,Rapacz-Kmita Alicja,Mosiałek Michał,Gajek Marcin,Lach Radosław,Presto Sabrina,Viviani Massimo,Carpanese Maria Paola,Barbucci Antonio,Majda Dorota

Abstract

Abstract The gelcasting method was used to form gastight Ba0.95Ca0.05Ce0.9Y0.1O3 samples proposed for use as proton-conducting electrolytes in solid oxide fuel cells. Methylcellulose was used as an environmentally friendly shaping agent for Ba0.95Ca0.05Ce0.9Y0.1O3 powder in an ethanol solution. Samples of Ba0.95Ca0.05Ce0.9Y0.1O3 were also prepared from the same powder via traditional isostatic pressing, as a reference for cast samples, and sintered in the same conditions. Comparative studies of the physicochemical properties of Ba0.95Ca0.05Ce0.9Y0.1O3 electrolytes, formed by means of these two methods and then sintered at 1550 °C for 2.5 h, were presented and discussed. Using the X-ray diffraction method, only the pure orthorhombic phase of BaCe0.9Y0.1O3 was detected in the Ba0.95Ca0.05Ce0.9Y0.1O3 powder, as well as in the Ba0.95Ca0.05Ce0.9Y0.1O3 sintered pellets formed via both gelcasting (A) and isostatic pressing (B). Thermal effects occurring during heating of methylcellulose, as well as ceramic Ba0.95Ca0.05Ce0.9Y0.1O3 powder, dried cast samples obtained from the prepared slurry, and sintered Ba0.95Ca0.05Ce0.9Y0.1O3 samples, were examined by differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, and evolved gas analysis of volatile products using a quadrupole mass spectrometer. The measurements were performed within the temperature range of 20–1200 °C in air. Based on dilatometric tests, it was found that the Ba0.95Ca0.05Ce0.9Y0.1O3 cast samples exhibited slightly higher degree of sinterability than the 5CBCY samples obtained by isostatic pressing. In comparison with pressed pellets, higher values of total electrical conductivity in air or in a gas mixture of 5% H2 in Ar were also attained for Ba0.95Ca0.05Ce0.9Y0.1O3 cast samples. The Ba0.95Ca0.05Ce0.9Y0.1O3 samples were used to construct oxygen–hydrogen electrolytes for solid oxide fuel cells. The results of the electrochemical performance of solid oxide fuel cells with Ba0.95Ca0.05Ce0.9Y0.1O3 electrolytes were comparable to the data in the literature on BaCe0.9Y0.1O3 electrolytes. An electrochemical study of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ|Ba0.95Ca0.05Ce0.9Y0.1O3 interface was also performed. Ba0.5Sr0.5Co0.8Fe0.2O3−δ appears to be a suitable cathode material for a Ba0.95Ca0.05Ce0.9Y0.1O3 electrolyte.

Funder

Akademia Górniczo-Hutnicza im. Stanislawa Staszica

Erasmus+

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3