Data-driven de-smearing of DSC signals

Author:

Sommer AndreasORCID,Hohenauer Wolfgang,Barz Tilman

Abstract

AbstractIn heat flux differential scanning calorimetry, a pair of identical crucibles, one empty as reference and the other filled with the sample, is heated in a furnace with a prescribed rate. The (empty) reference crucible heats faster, resulting in a temperature difference that is detected by thermocouples. Slow heating of the furnace results in weak and noisy signals; higher heating rates induce strong signals but lead to smearing if applied to materials undergoing a phase transition: The recorded peak signal is shifted toward higher temperatures. To determine the peak, the onset/endset temperatures, and the phase transition enthalpy, multiple heating rates are used to find a trade-off between noise and smearing. When plotting the melting peaks over temperature and heating rate, the visual similarity to the time evolution of a probability density under drift and diffusion catches the eye. Such a density evolution can be described by the Fokker–Planck equations. In this analogon, the de-smeared signal corresponds to the initial distribution. We propose a data-driven de-smearing approach, based on an extrapolation to a (hypothetical) zero heating rate signal. This zero rate signal is low-dimensionally parameterized and its parameters together with the drift and diffusion of the Fokker–Planck equation are fitted against the calorimetric measurements. The method is successfully tested on heat capacity data of a technical-grade high-density polyethylene (HDPE) using mid-range heating rates. The data are strongly affected by smearing, and the proposed de-smearing method $${FPEX}_{0}$$ FPEX 0 delivers reliable estimates of characteristic shape parameters of the phase transition peak effectively overcoming the problem of a deteriorating signal-to-noise ratio for heating rates approaching zero.

Funder

Österreichische Forschungsförderungsgesellschaft

Carl-Zeiss-Stiftung

Klima- und Energiefonds

Ruprecht-Karls-Universität Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics

Reference35 articles.

1. Höhne GWH, Flemminger WF, Flammersheim H-J. Differential scanning calorimetry. Berlin Heidelberg New York: Springer; 2003.

2. Wunderlich B. Thermal analysis of polymeric materials. Berlin, Heidelberg: Springer; 2005.

3. Bandara U. A systematic solution to the problem of sample background correction in DSC curves. J Thermal Anal. 1986;31(5):1063–71.

4. Hemminger W, Sarge S. The baseline construction and its influence on the measurement of heat with differential scanning calorimeters. J Thermal Anal Calorim. 1991;37(7):1455–77.

5. Deutsches Institut für Normung e. V. DIN 51007: Thermische Analyse (TA) – Differenz-Thermoanalyse (DTA) und Dynamische Differenzkalorimetrie (DSC): Allgemeine Grundlagen [Thermal analysis—Differential thermal analysis (DTA) and differential scanning calorimetry (DSC): General Principles], 2019.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3