Study of heat transfer and pressure drop for novel configurations of helical tube heat exchanger: a numerical and experimental approach

Author:

Marzouk S. A.ORCID,Abou Al-Sood M. M.,El-Said Emad M. S.,El-Fakharany Magda K.,Younes M. M.

Abstract

AbstractIn this study, several unique tube configurations are designed and modeled to examine the thermal and hydraulic performance of a helical tube heat exchanger (HTHE) experimentally and numerically. For cold and hot side tube designs, the numerical investigation is completed using three-dimensional modeling, and the findings are confirmed using experimental data with Reynolds numbers ranging from 16,000 to 25,000. Six configurations named HTHE1, HTHE2, HTHE3, HTHE4, HTHE5, and HTHE6 are tested. The findings showed that as compared to the uniform tube distribution, the new arrangements have a greater overall heat transfer coefficient. The overall heat transfer coefficient has the highest enhancement ratio (125–185%) in the HTHE6 setup with two pathways. Additionally, it is discovered that the pressure drop rises as the Reynolds number increases. The HTHE1 configuration has the highest pressure drop values, whereas configurations with only one pass result in a greater pressure loss when compared to setups with two paths. The values of the coefficient of performance for the HTHE6 are larger than those of other forms, and the coefficient of performance decreases as the Reynolds number increases. The exergy efficiency grows with the rise of Reynolds number where the HTHE6 has the maximum value of exergy efficiency compared to other shapes. The performance of heat transfer is dramatically improved by the novel tube arrangements, although variations in pressure drop and pumping power are only a little affected.

Funder

Kafr El Shiekh University

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Polymers and Plastics,Materials Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3