Investigating the modified thermoelectric generator system performance

Author:

Harb Abd El-Moneim A.,Elsayed Khairy,Kabeel A. E.,Ahmed Mahmoud,Abdo Ahmed

Abstract

AbstractIt is essential to enhance the performance of the thermoelectric generator as lower efficiencies are obtained recently. This could be achieved by changing its dimensions in addition to copper strip thickness. The present study is performed to obtain the best dimensions of the PN legs considering the interaction between all variables. To do this, a comprehensive TEG model is achieved in addition to utilizing the single-objective optimization technique. The main performance metrics, including electricity production and conversion efficiency, are assessed, and contrasted with the conventional TEG system since the simulation. The length of the legs and their cross-sectional area were shown to significantly affect power production. The thickness of the conducting plate, in contrast, barely matters. For instance, a PN pair with legs that have a 2 mm2 cross-sectional area generates 0.4 W and 1.3 W for temperature differences of 480 °C and 980 °C, respectively. Furthermore, the equivalent efficiencies are 4.41% and 6.73%, respectively. Using the genetic algorithm revealed that the ideal values for the leg cross section, leg length, and conducting plate thickness are 1.84 mm2, 0.5 mm, and 0.44 mm, respectively. Once compared to the conventional system, using the optimization method results in an improvement in power production and conversion efficiency of about 247% at a temperature differential of 980 °C.

Funder

Tanta University

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Polymers and Plastics,Materials Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3