Synthesis and thermal characterization of porous polymeric microspheres functionalized with thiol groups

Author:

Maciejewska MagdalenaORCID,Grochowicz MartaORCID

Abstract

AbstractThe paper presents a method of the preparation and functionalization of polymer microspheres consisting of glycidyl methacrylate (GMA) and crosslinking agents: 1,4-dimethacryloyloxybenzene (1,4DMB) and trimethylolpropane trimethacrylate (TRIM). Poly(GMA-co-1,4DMB) and poly(GMA-co-TRIM) microspheres were obtained by seed swelling polymerization. To introduce thiol groups into the microspheres structure, the reaction with thiocarboxylic acids was performed. The chemical structure of parent and modified microspheres was confirmed by FTIR and Raman spectroscopy. Elemental composition of microspheres after functionalization was determined by elemental analysis. The analysis showed the percentage of sulfur in the range of 2.78–4.51%, which corresponds to a concentration of thiol group in the range of 0.87–1.41 mmol g−1. Additionally, the porous structure of the copolymers was investigated using the low-temperature nitrogen adsorption–desorption method. The starting microspheres are characterized by a specific surface in the range of 150–160 m2 g−1, whereas functionalized copolymers indicate slightly lower surface area, of about 130 m2 g−1. The thermal stability of the materials was determined by the method of differential scanning calorimetry and thermogravimetric analysis. The course of the thermal degradation under oxidative conditions of modified microspheres is different from the starting copolymers. The functionalized microspheres showed much higher thermal stability (approximately 270 °C) compared to the starting microspheres (230–250 °C).

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3