CO2 mineralization by burnt oil shale and cement bypass dust: effect of operating temperature and pre-treatment

Author:

Yörük Can RüstüORCID,Uibu Mai,Usta Mustafa Cem,Kaljuvee Tiit,Trikkel Andres

Abstract

AbstractThe alkaline wastes such as burnt oil shale (BOS) and cement bypass dust (BPD) generally contain free lime and portlandite which make them suitable sorbent materials for CO2 trapping via mineral carbonation technique of carbon capture and sequestration. In order to study the reaction kinetics and effect of operating parameters on carbonation processes of such alkaline wastes for future industrial sized scale-ups, as well as to identify the effects on carbonation capacity when these sorbents undergo pre-treatment and are exposed to different temperatures, BOS and BPD as sorbents in CO2 mineralization process have been investigated with thermal analysis methods in the current work. Results indicate that selected types of BOS and BPD could be used as binders in the CO2 mineralization systems, binding reasonably good amount of CO2 already in the early stage of the carbonation process which later slows down as the rate of CaO carbonation becomes mainly diffusion controlled. Increased process temperature and hydration as pre-treatment improve the CO2 binding ability, while the effect of milling has been found to be staggering and not as significant as the effect of hydration and temperature rise. The appropriate kinetic mechanism functions were determined, and the kinetic parameters—activation energy (Ea) and pre-exponential factor (A) values were calculated for all the samples. The Ea values of hydrated samples are lower for BOS samples compared to non-hydrated samples. It was shown that activation by hydration enables to reach the same CO2 uptake levels at lower temperatures, thereby making the mineralization process more energy efficient and thus lowering the costs.

Funder

Horizon 2020 Framework Programme

Estonian Ministry of Education and Research

Publisher

Springer Science and Business Media LLC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development review and the prospect of oil shale in-situ catalysis conversion technology;Petroleum Science;2023-09

2. Laboratory carbonation methods: testing and evaluation;Sustainable Utilization of Carbon Dioxide in Waste Management;2023

3. Carbonation of steel slag;Sustainable Utilization of Carbon Dioxide in Waste Management;2023

4. Carbonation of cement kiln dust;Sustainable Utilization of Carbon Dioxide in Waste Management;2023

5. Influence of the end-temperature on the oil shale fast pyrolysis process and its products;Journal of Thermal Analysis and Calorimetry;2022-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3