How to speed up the detection of aerobic microbial contaminations by using isothermal microcalorimetry

Author:

Fricke Christian,Harms Hauke,Maskow ThomasORCID

Abstract

AbstractIsothermal microcalorimetry (IMC) is regarded as a promising diagnostic tool for fast detection of bacterial contaminations in various matrices. Based on a reference detection time determined by visual inspection of bacterial growth on solid medium, we investigated the strict aerobically growing Pseudomonas putida mt-2 KT2440 in a static 4-mL ampoule system on solid and liquid media by IMC to evaluate the three main options to reduce the detection time of bacterial contamination. Firstly, the sample preparation (e.g. membrane filtration) leads to an elevated number of bacteria in the measuring ampoule and thus to a reduced detection time. Secondly, the amount of substrate and oxygen has been investigated by varying the filling volume of medium in the calorimetric ampoule. Here, we were able to show how biophysical characteristics like the substrate and oxygen diffusion determined the shape of heat flow signals and thus the detection time. Finally, the technical framework determines the sensitivity of the IMC instrument. We examined the impact of four different detection threshold values (2, 10, 50 and 100 µW) on the detection time as a function of the initial number of bacteria presented in the ampoule and the filling volume.

Funder

German Federation of Industrial Research Associations

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3