Challenges in the thermal modeling of highly porous carbon foams

Author:

Fehér A.,Kovács R.ORCID,Sudár Á.,Barnaföldi G. G.

Abstract

AbstractThe heat pulse (flash) experiment is a well-known, widely used method to determine thermal diffusivity. However, for heterogeneous, highly porous materials, neither the measurement nor the evaluation methodologies are straightforward. In the present paper, we focus on two open-cell carbon foam types, differing in their porosity but having the same sample size. Recent experiments showed that a non-Fourier behavior, called ’over-diffusive’ propagation, can be present for such a complex structure. The (continuum) Guyer–Krumhansl equation stands as a promising candidate to model such transient thermal behavior. In order to obtain a reliable evaluation and thus reliable thermal parameters, we utilize a novel, state-of-the-art evaluation procedure developed recently using an analytical solution of the Guyer–Krumhansl equation. Based on our observations, it turned out that the presence of high porosity alone is necessary but not satisfactory for non-Fourier behavior. Additionally, the mentioned non-Fourier effects are porosity-dependent; however, porous samples can also follow the Fourier law on a particular time scale. These data serve as a basis to properly identify the characteristic heat transfer mechanisms and their corresponding time scales, which altogether result in the present non-Fourier behavior. Based on these, we determined the validity region of Fourier’s law in respect of time scales.

Funder

Nemzeti Kutatási és Technológiai Hivatal

Magyar Tudományos Akadémia

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3