Abstract
AbstractWe have developed a simple method to prepare nano-(ZrC0.93, ZrO2-polymorphs)@carbon composites with graphite/amorphous carbon content and adjustable Zr/C ratio based on using a multistep tube furnace and plasma-assisted heat treatment of zirconium-loaded sulfonated styrene–divinylbenzene (STY-DVB) copolymers. Pre-pyrolysis of zirconium-loaded sulfonated STY-DVB ion exchangers with 2 and 8 mass % DVB at temperatures between 1000 and 1400 °C for 2 h produced nano-ZrO2@C intermediates with particle sizes of ~ 30–60 nm with no ZrC formation. Plasma processing of nano-ZrO2@C resulted in nano-(ZrC0.93, ZrO2)@C composites with 11% (under a He atmosphere) (C/Zr = 73) or 13% (under a H2 atmosphere) (C/Zr = 58) ZrC0.93 content. Three polymorphs of the zirconium dioxide (tetragonal, monoclinic and cubic, between 18 and 27 nm) were found in the products. The amounts of tetragonal and monoclinic ones are comparable to that of ZrC0.93. The average particle size of ZrC0.93 prepared in this way was found to be 21–23 nm. The BET surface area of the nano-(ZrC0.93, ZrO2)@C(graphite) composites prepared in He and H2 was over 250 and 300 m2/g, respectively. We developed a reproducible and easy method to prepare nano-(ZrC, ZrO2)@C products by setting the DVB content, sulfonation degree, Zr loading and the thermal treatment conditions, which have an influence on the ZrC and graphite/amorphous carbon content of nano-ZrO2@C intermediates. The zirconium-loaded sulfonated styrene–divinylbenzene (STY-DVB) copolymers (2 and 8 mass% DVB) or their thermal decomposition was characterized with vibrational spectroscopy, thermal analysis and DSC or powder XRD, BET, XPS and HRTEM methods, respectively.
Funder
European Regional Development Fund
ELKH Research Centre for Natural Sciences
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献