Design and experimental investigation of a thermoelectric vaccine cabinet integrated with photovoltaic and nanofluids

Author:

Cuce Pinar Mert

Abstract

AbstractVaccines are one of the most effective methods used to prevent many lethal and infectious diseases from past to present. Generally, storage temperatures of vaccines are between 2 and 8 °C. Keeping the vaccines in this temperature range and ensuring reach the end user without deterioration is very important in order to prevent the vaccines from losing their effectiveness. In this regard, various cooling systems are used. One of the devices used to ensure the cold storage of vaccines is a thermoelectric device. Thermoelectric devices attract attention as an energy-efficient technology, as well as their compact structure, silent and vibration-free operation, and suitability for automation. In this study, the design and manufacturing of a photovoltaic solar energy-driven, nanofluid-integrated thermoelectric vaccine cabinet was carried out and its performance data were experimentally examined. The capacity of the vaccine cabinet is 200 vaccine vials and 200 ready-to-use syringes, as well as the battery and inverter parts. In experiments carried out at two different outdoor temperatures, heat removal from the hot surface of the thermoelectric cooler with different refrigerants were examined. In addition, the effects of using fans were also investigated while the heat swept from the surface was transferred to the environment with the help of a water-to-air heat exchanger. In the experiments carried out for a total of 8 different cases, the highest average coefficient of performance value obtained during the experiments was 1.19. Experimental results show that vaccine storage temperatures can be reached under the prepared operating conditions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3