Methodology for measuring the thermal conductivity of insulating samples with small dimensions by heat flow meter technique

Author:

Sánchez-Calderón IsmaelORCID,Merillas Beatriz,Bernardo Victoria,Rodríguez-Pérez Miguel Ángel

Abstract

AbstractNowadays, developing advanced, highly insulating materials for minimizing heat losses in buildings is of utmost relevance. Thus, there is a constant research activity focused on developing new and enhanced solutions for thermal insulation. However, characterizing the behavior of new thermal insulation materials, usually produced at lab-scale with small dimensions, by a steady-state approach is a challenge. The reason is that commercial heat flow meters require large samples (hundred on mm side) to provide accurate results of thermal conductivity because they are based on international standards. In this work, a new methodology to measure the thermal conductivity of small prototypes of thermal insulating materials (as low as 50 × 50 mm2) is developed by using an external heat flow sensor placed into a standard heat flow meter apparatus. Four different thermal insulators were used to validate the developed methodology by performing measurements in the heat flow meter with and without the external sensor. From these results, a calibration curve that relates both methods was calculated. Furthermore, the effect of the sample size was studied to explore the limits of the technique. Results show that the self-developed method is an accurate procedure to determine the thermal conductivity of samples with small dimensions via a steady-state condition. Graphical abstract

Funder

European Regional Development Fund of the European Union and the of Castile and Leon

Consejería de Educación, Junta de Castilla y León

Ministerio de Ciencia, Innovación y Universidades

Universidad de Valladolid

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3