Influence of modified biopolymers on thermal properties and biodegradation processes of carboxylated nitrile-butadiene (XNBR) nanocomposities

Author:

Prochon M.

Abstract

AbstractThe presented study includes a comparison of the effect of fillers used in carboxylated nitrile butadiene rubber XNBR on the properties of the obtained polymer materials. Fillers used in this study originated from the tanning industry waste: cattle hair keratin, enzymatic hydrolyzate of cattle hair keratin and condensate of enzymatic hydrolyzate of cattle hair keratin. The use of commonly found in nature phyllosilicates allows to obtain nanocomposites. That is why in the presented study we used different mass fraction of layered silicate—montmorillonite. The dispersion of silicates in polymer matrices can be influenced by their physical and chemical modifications that lead to changes in the properties of the polymer matrices themselves. In the presented study the kinetics of vulcanization of elastomer blends was investigated, and the obtained XNBR rubber vulcanizates were analyzed for mechanical, optical, rheological, thermal analysis and their resistance to accelerated thermo-oxidative aging (S) and susceptibility to biodegrade were tested. The produced elastomer composites may be used in the rubber industry in the assortment of various types of washers, elastomer seals or conveyor belts—materials that often work under elevated temperature conditions. Therefore, it seems advisable to understand the thermal properties of this type of materials, eg for suitability in real conditions. Therefore, Thermogravimetry (TG), Differential Scanning Calorimetry (DSC), Oxygen Index (IO) analyzes have been carried out, showing that different mechanisms of decomposition occur in layers of fiber-enriched polymer composites than unrecoverable ones. The modified keratin also slightly decreases the glass transition temperature. In addition, the presence of a modified keratin in the XNBR elastomer structure increases the composites compliance with the biodegradation process.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3