Author:
Nair S. R.,Oon C. S.,Tan M. K.,Mahalingam Savisha,Manap Abreeza,Kazi S. N.
Abstract
AbstractThe paper investigated the benefits of having fins that induce swirling flow within an annular passage. The importance of the vortical structures produced using different fin angles and flow velocities in heat transfer was studied. The combination of swirling fluid with recirculation on heat transfer within an annular domain was not fully understood, and this paper aims to address that gap. The 10°, 20°, 30° and 40° angled fins were investigated to understand the changes in heat transfer performance as fluid recirculation becomes more dominant as angles become steeper. The usage of CGNP colloidal suspension was investigated for its potential benefits in heat transfer in a domain with angled fins. The CGNP concentrations of 0.025, 0.075 and 0.1 mass % were used as part of this investigation. Higher concentrations of CGNP increased the overall heat transfer coefficient. A more compact fin spacing improved heat transfer performance at the expense of increased pressure drop. Fin angles of 20° and 30° yielded poor heat transfer performance in the transitional flow regime (2000 < Re < 3000) due to the smaller swirling longitudinal vortices being insufficient in promoting fluid mixing from the thermal boundary layer into the freestream.
Funder
Ministry of Education Malaysia
Monash University
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献