A novel time-dependent analytical model for optimizing efficiency and valve timing in Ericsson engines

Author:

Tzouganakis Panteleimon,Gakos Vasilios,Kalligeros Christos,Papalexis Christos,Spitas Vasilios

Abstract

AbstractIn this work, a novel analytical time-sensitive model for Ericsson engines was developed taking into account the heat transfer phenomena between the working gas and the cylinder walls in the compressor and the expander. For the calculation of the mass flow entering/exiting each cylinder, another dedicated flow model was developed to account for the pressure drop at the valves. From the energy equilibrium taking into consideration the time-dependent thermal response of the cylinder walls and the enthalpy entering/exiting each cylinder through the valves, an analytical solution of the working gas pressure and temperature can be obtained for every time step and consequently, the thermal efficiency of the engine can be calculated. A case study was performed where the thermal efficiency of an Ericsson engine was calculated for different rotational speeds and heat exchanger gas temperatures. It was observed that with higher temperatures thermal efficiency maintained a more stable behaviour with a weak dependence on rotational speed. The thermal efficiency of the engine in the performed case studies was found in the range of 10% to 14%. The valve timing of the Ericsson engine was optimized in order to achieve the highest thermal efficiency possible. The thermal efficiency of the engine could be increased up to 26% as a percentage after a thorough optimization of the valve timing. Finally, backflow phenomena accounting for thermal efficiency drop were studied. The developed model can also be applied to other types of external combustion engines such as Stirling engines.

Funder

National Technical University of Athens

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3