Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference8 articles.
1. N. Fenichel, Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. vol.21 (1971), pp. 193–226.
2. N. Fenichel, Geometric Singular Perturbation Theory for Ordinary Differential Equations. J.Differential Equations, vol.31 (1979), pp. 53–98.
3. N. Kopbell, A geometric approach to boundary layer problems exhibiting resonance. SIAM J. applied math. vol. 37 (1979), pp. 436–458.
4. H.W. Knobloch and B. Aulbach, Singular perturbation and integral manifolds. J.Math. Phys. Sci. vol. 18 (1984),pp.415–424.
5. H.W.Knobloch, A method for constructing invariant manifolds. In: Asymptotic methods for the mathematical physics, Kiev 1988. To appear.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparison theorems for multi-point first-order problems;Nonlinear Analysis: Theory, Methods & Applications;1997-12
2. Invariant Manifolds for Ordinary Differential Equations;Mathematics in Science and Engineering;1992
3. Construction of Center Manifolds;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;1990
4. A new approach to identification problems using singular perturbations;New Trends in Nonlinear Control Theory