A stochastic policy algorithm for seasonal hydropower planning

Author:

Grini Håkon S.ORCID,Danielsen Anders S.,Fleten Stein-Erik,Kleiven Andreas

Abstract

AbstractHydropower producers need to plan several months or years ahead to estimate the opportunity value of water stored in their reservoirs. The resulting large-scale optimization problem is computationally intensive, and model simplifications are often needed to allow for efficient solving. Alternatively, one can look for near-optimal policies using heuristics that can tackle non-convexities in the production function and a wide range of modelling approaches for the price- and inflow dynamics. We undertake an extensive numerical comparison between the state-of-the-art algorithm stochastic dual dynamic programming (SDDP) and rolling forecast-based algorithms, including a novel algorithm that we develop in this paper. We name it Scenario-based Two-stage ReOptimization abbreviated as STRO. The numerical experiments are based on convex stochastic dynamic programs with discretized exogenous state space, which makes the SDDP algorithm applicable for comparisons. We demonstrate that our algorithm can handle inflow risk better than traditional forecast-based algorithms, by reducing the optimality gap from 2.5 to 1.3% compared to the SDDP bound.

Funder

Norges Teknisk-Naturvitenskapelige Universitet

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Economics and Econometrics,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3