An approach to evaluating the impact of contaminants on flux deposition in gas turbines

Author:

Mori StefanoORCID,Mendil Mathilde,Wells Jonathan,Chapman Neil,Simms Nigel,Wells Roger,Sumner Joy

Abstract

AbstractGas turbines are a key part of many countries’ power generation portfolios, but components such as blades can suffer from hot corrosion attack, which can decrease component lifetimes. Corrosion is driven by impurity levels in the fuel and air (e.g., species containing sulphur and/or alkali metals) and depends on environmental conditions (e.g., air pollution, seawater droplets), that can lead to formation of harmful species in the gas. Understanding and determining the deposition flux of such contaminants is crucial for understanding the problem. Thermodynamic simulations were used to determine types and amounts of potentially corrosive contaminants, this was followed by deposition fluxes calculations. An operating scenario, based upon an offshore platform was evaluated. The effectiveness of different filtration systems has been evaluated. The impurity levels of alkali metals, such as sodium, greatly impacts the calculated deposition flux of species linked to corrosion attack. The presence of Na2SO4, and K2SO4 was found, at temperature representative of stage 2 nozzle guide vanes. Lowering sulphur input (from fuel or air) can be an efficient way to decrease deposition, attention must also be paid to lowering the amount of alkali metal entering the gas turbine, which can be lowered by the filtration systems’ correct use.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Economics and Econometrics,Modeling and Simulation

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3