Inhibition of the 3-mercaptopyruvate sulfurtransferase—hydrogen sulfide system promotes cellular lipid accumulation

Author:

Casili Giovanna,Randi Elisa,Panagaki Theodora,Zuhra Karim,Petrosino Maria,Szabo CsabaORCID

Abstract

Abstract H2S is generated in the adipose tissue by cystathionine γ-lyase, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase (3-MST). H2S plays multiple roles in the regulation of various metabolic processes, including insulin resistance. H2S biosynthesis also occurs in adipocytes. Aging is known to be associated with a decline in H2S. Therefore, the question arises whether endogenous H2S deficiency may affect the process of adipocyte maturation and lipid accumulation. Among the three H2S-generating enzymes, the role of 3-MST is the least understood in adipocytes. Here we tested the effect of the 3-MST inhibitor 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE) and the H2S donor (GYY4137) on the differentiation and adipogenesis of the adipocyte-like cells 3T3-L1 in vitro. 3T3-L1 cells were differentiated into mature adipocytes in the presence of GYY4137 or HMPSNE. HMPSNE significantly enhanced lipid accumulation into the maturing adipocytes. On the other hand, suppressed lipid accumulation was observed in cells treated with the H2S donor. 3-MST inhibition increased, while H2S donation suppressed the expression of various H2S-producing enzymes during adipocyte differentiation. 3-MST knockdown also facilitated adipocytic differentiation and lipid uptake. The underlying mechanisms may involve impairment of oxidative phosphorylation and fatty acid oxidation as well as the activation of various differentiation-associated transcription factors. Thus, the 3-MST/H2S system plays a tonic role in suppressing lipid accumulation and limiting the differentiation of adipocytes. Stimulation of 3-MST activity or supplementation of H2S—which has been recently linked to various experimental therapeutic approaches during aging—may be a potential experimental approach to counteract adipogenesis.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

University of Fribourg

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3