Translatability of mouse muscle-aging for humans: the role of sex

Author:

de Jong Jelle C. B. C.ORCID,Caspers Martien P. M.,Worms Nicole,Keijzer Nanda,Kleemann Robert,Menke Aswin L.,Nieuwenhuizen Arie G.,Keijer Jaap,Verschuren Lars,van den Hoek Anita M.

Abstract

AbstractMuscle-aging drives sarcopenia and is a major public health issue. Mice are frequently used as a model for human muscle-aging, however, research investigating their translational value is limited. In addition, mechanisms underlying muscle-aging may have sex-specific features in humans, but it is not yet assessed whether these are recapitulated in mice. Here, we studied the effects of aging on a functional, histological and transcriptional level at multiple timepoints in male and female mice (4, 17, 21 and 25 months), with particular emphasis on sex-differences. The effects of natural aging on the transcriptome of quadriceps muscle were compared to humans on pathway level. Significant loss of muscle mass occurred late, at 25 months, in both male (-17%, quadriceps) and female mice (-10%, quadriceps) compared to young control mice. Concomitantly, we found in female, but not male mice, a slower movement speed in the aged groups compared to the young mice (P < 0.001). Consistently, weighted gene co-expression network analysis revealed a stronger association between the aging-related reduction of movement and aging-related changes in muscle transcriptome of female compared to male mice (P < 0.001). In male, but not female mice, major distinctive aging-related changes occurred in the last age group (25 months), which highlights the necessity for careful selection of age using mice as a muscle-aging model. Furthermore, contrasting to humans, more aging-related changes were found in the muscle transcriptome of male mice compared to female mice (4090 vs. 2285 differentially expressed genes at 25 months, respectively). Subsequently, male mice recapitulated more muscle-aging related pathways characteristic for both male and female humans. In conclusion, our data show that sex has a critical effect on the mouse muscle-aging trajectory, although these do not necessarily reflect sex differences observed in the human muscle-aging trajectory.

Funder

Ministerie van Economische Zaken

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3