A metabolomic signature of decelerated physiological aging in human plasma

Author:

Janssens Georges E.ORCID,Grevendonk Lotte,Schomakers Bauke V.,Perez Ruben Zapata,van Weeghel Michel,Schrauwen Patrick,Hoeks Joris,Houtkooper Riekelt H.

Abstract

Abstract The degenerative processes that occur during aging increase the risk of disease and impaired health. Meanwhile, interventions that target aging to promote healthy longevity are gaining interest, both academically and in the public. While nutritional and physical interventions exist, efficacy is often difficult to determine. It is therefore imperative that an aging score measuring the biological aging process is available to the wider public. However, simple, interpret, and accessible biological aging scores are lacking. Here, we developed PhysiAge, a physiological aging score based on five accessible parameters that have influence on or reflect the aging process: (1) average daily step count, (2) blood glucose, (3) systolic blood pressure, (4) sex, and (5) age. Here, we found that compared to calendar age alone, PhysiAge better predicts mortality, as well as established muscle aging markers such as decrease in NAD+ levels, increase in oxidative stress, and decline in physical functioning. In order to demonstrate the usefulness of PhysiAge in identifying relevant factors associated with decelerated aging, we calculated PhysiAges for a cohort of aged individuals and obtained mass spectrometry-based blood plasma metabolomic profiles for each individual. Here, we identified a metabolic signature of decelerated aging, which included components of the TCA cycle, including malate, citrate, and isocitrate. Higher abundance of these metabolites was associated with decelerated aging, in line with supplementation studies in model organisms. PhysiAge represents an accessible way for people to track and intervene in their aging trajectories, and identifies a metabolic signature of decelerated aging in human blood plasma, which can be further studied for its causal involvement in human aging.

Funder

Zonmw

AGEM

Norn Group

HORIZON EUROPE European Research Council

ZonMW

Velux Stiftung

TIFN

NWO

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3