Abstract
AbstractVarious approaches exist to quantify the aging process and estimate biological age on an individual level. Frailty indices based on an age-related accumulation of physical deficits have been developed for human use and translated into mouse models. However, declines observed in aging are not limited to physical functioning but also involve social capabilities. The concept of “social frailty” has been recently introduced into human literature, but no index of social frailty exists for laboratory mice yet. To fill this gap, we developed a mouse Social Frailty Index (mSFI) consisting of seven distinct assays designed to quantify social functioning which is relatively simple to execute and is minimally invasive. Application of the mSFI in group-housed male C57BL/6 mice demonstrated a progressively elevated levels of social frailty through the lifespan. Conversely, group-housed females C57BL/6 mice manifested social frailty only at a very old age. Female mice also showed significantly lower mSFI score from 10 months of age onward when compared to males. We also applied the mSFI in male C57BL/6 mice under chronic subordination stress and in chronic isolation, both of which induced larger increases in social frailty compared to age-matched group-housed males. Lastly, we show that the mSFI is enhanced in mouse models that show accelerated biological aging such as progeroid Ercc1−/Δ and Xpg−/− mice of both sexes compared to age matched littermate wild types. In summary, the mSFI represents a novel index to quantify trajectories of biological aging in mice and may help elucidate links between impaired social behavior and the aging process.
Funder
National Institute on Aging
Publisher
Springer Science and Business Media LLC
Reference115 articles.
1. Arias E, Kochanek KD, Xu J, Tejada-Vera B. Provisional life expectancy estimates for 2022 (No. 31; Vital Statistics Rapid Release). National Center for Health Statistics. 2023. https://doi.org/10.15620/cdc:1333703.
2. Medina LD, Sabo S, Vespa J. Living longer: historical and projected life expectancy in the United States, 1960 to 2060 (P25–1145). Census Bureau: U.S; 2020.
3. He W, Goodkind D, Kowal P. An aging world: 2015 (P95/16–1; International Population Reports). Census Bureau: U.S; 2016.
4. Kirkwood TBL. Understanding the odd science of aging. Cell. 2005;120(4):437–47. https://doi.org/10.1016/j.cell.2005.01.027.
5. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, AlMazroa MA, Alvarado M, Anderson HR, Anderson LM, Murray CJL. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96. https://doi.org/10.1016/S0140-6736(12)61729-2. (London, England).