Learning from machine learning: prediction of age-related athletic performance decline trajectories

Author:

Hoog Antink ChristophORCID,Braczynski Anne K.ORCID,Ganse BergitaORCID

Abstract

AbstractFactors that determine individual age-related decline rates in physical performance are poorly understood and prediction poses a challenge. Linear and quadratic regression models are usually applied, but often show high prediction errors for individual athletes. Machine learning approaches may deliver more accurate predictions and help to identify factors that determine performance decline rates. We hypothesized that it is possible to predict the performance development of a master athlete from a single measurement, that prediction by a machine learning approach is superior to prediction by the average decline curve or an individually shifted decline curve, and that athletes with a higher starting performance show a slower performance decline than those with a lower performance. The machine learning approach was implemented using a multilayer neuronal network. Results showed that performance prediction from a single measurement is possible and that the prediction by a machine learning approach was superior to the other models. The estimated performance decline rate was highest in athletes with a high starting performance and a low starting age, as well as in those with a low starting performance and high starting age, while the lowest decline rate was found for athletes with a high starting performance and a high starting age. Machine learning was superior and predicted trajectories with significantly lower prediction errors compared to conventional approaches. New insights into factors determining decline trajectories were identified by visualization of the model outputs. Machine learning models may be useful in revealing unknown factors that determine the age-related performance decline.

Funder

Deutsche Forschungsgemeinschaft

Universität des Saarlandes

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology,Ageing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3