Prediction of cognitive performance differences in older age from multimodal neuroimaging data

Author:

Krämer Camilla,Stumme Johanna,da Costa Campos Lucas,Dellani Paulo,Rubbert Christian,Caspers Julian,Caspers Svenja,Jockwitz Christiane

Abstract

Abstract Differences in brain structure and functional and structural network architecture have been found to partly explain cognitive performance differences in older ages. Thus, they may serve as potential markers for these differences. Initial unimodal studies, however, have reported mixed prediction results of selective cognitive variables based on these brain features using machine learning (ML). Thus, the aim of the current study was to investigate the general validity of cognitive performance prediction from imaging data in healthy older adults. In particular, the focus was with examining whether (1) multimodal information, i.e., region-wise grey matter volume (GMV), resting-state functional connectivity (RSFC), and structural connectivity (SC) estimates, may improve predictability of cognitive targets, (2) predictability differences arise for global cognition and distinct cognitive profiles, and (3) results generalize across different ML approaches in 594 healthy older adults (age range: 55–85 years) from the 1000BRAINS study. Prediction potential was examined for each modality and all multimodal combinations, with and without confound (i.e., age, education, and sex) regression across different analytic options, i.e., variations in algorithms, feature sets, and multimodal approaches (i.e., concatenation vs. stacking). Results showed that prediction performance differed considerably between deconfounding strategies. In the absence of demographic confounder control, successful prediction of cognitive performance could be observed across analytic choices. Combination of different modalities tended to marginally improve predictability of cognitive performance compared to single modalities. Importantly, all previously described effects vanished in the strict confounder control condition. Despite a small trend for a multimodal benefit, developing a biomarker for cognitive aging remains challenging.

Funder

European Union’s Horizon 2020 Research and Innovation Programme

Forschungszentrum Jülich GmbH

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3