Five years later, with double the demographic data, naked mole-rat mortality rates continue to defy Gompertzian laws by not increasing with age

Author:

Ruby J. Graham,Smith Megan,Buffenstein RochelleORCID

Abstract

AbstractThe naked mole-rat (Heterocephalus glaber) is a mouse-sized rodent species, notable for its eusociality and long lifespan. Previously, we reported that demographic aging, i.e., the exponential increase of mortality hazard that accompanies advancing age in mammals and other organisms, does not occur in naked mole-rats (Ruby et al., 2018), a finding that has potential implications for human healthy aging. The demographic data supporting that conclusion had taken over three decades to accumulate, starting with the original rearing of H. glaber in captivity. This finding was controversial since many of the animals in that study were relatively young. In the 5 years following that study, we have doubled our quantity of demographic data. Here, we re-evaluated our prior conclusions in light of these new data and found them to be not only supported but indeed strengthened. We additionally provided insight into the social dynamics of captive H. glaber with data and analyses of body weight and colony size versus mortality. Finally, we provide a phylogenetically proximal comparator in the form of lifespan data from our Damaraland mole-rat (Fukomys damarensis) colony and demographic meta-analysis of those data along with published data from Ansell’s mole-rat (Fukomys anselli). We found Fukomys mortality hazard to increase gradually with age, an observation with inferences on the evolution of exceptional lifespan among mole-rats and the ecological factors that may have accompanied that evolution.

Funder

Calico Lifesciences LLC

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Untapped Potential of Comparative Biology in Aging Research: Insights From the Extraordinary-Long-Lived Naked Mole-Rat;The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences;2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3